714. Best Time to Buy and Sell Stock with Transaction Fee
714. Best Time to Buy and Sell Stock with Transaction Fee
Your are given an array of integers prices
, for which the i
-th element is the price of a given stock on day i
; and a non-negative integer fee
representing a transaction fee.
You may complete as many transactions as you like, but you need to pay the transaction fee for each transaction. You may not buy more than 1 share of a stock at a time (ie. you must sell the stock share before you buy again.)
Return the maximum profit you can make.
Example 1:
Input: prices = [1, 3, 2, 8, 4, 9], fee = 2
Output: 8
Explanation: The maximum profit can be achieved by:
Buying at prices[0] = 1; Selling at prices[3] = 8
Buying at prices[4] = 4; Selling at prices[5] = 9
The total profit is ((8 - 1) - 2) + ((9 - 4) - 2) = 8.
Note:
0 < prices.length <= 50000
.
0 < prices[i] < 50000
.
0 <= fee < 50000
.
My Solutions:
因为涉及两种状态,所以不能和#122一样用贪心算法。
每一天可能进行卖旧股或者买新股的操作,必须先卖旧股再买新股。因此,需要建立两个动态规划数组:sold和hold。sold[i]
表示,如果第i天出售股票,可以得到的最大利润。hold[i]
表示,如果第i天保留股票,可以得到的最大利润。
sold[i]
有两个状态,选择1或2中的最大值:
不卖股票,保持前一天也就是
sold[i-1]
的售出利润在i天卖掉股票,总利润是前一天手里有股票的利润+今天卖出价格-交易费
sold[i] = max(sold[i-1], hold[i - 1] + prices[i] - fee);
hold[i]
也有两个状态,选择1或2中的最大值:
保持前一天也就是hold[i-1]的利润
在i天购入新股,总利润是昨天股票卖了的利润减去今天再买入的价格
hold[i]=max(hold[i-1],sold[i−1]−prices[i])
简化一下可以只用两个变量记录变化。利润记做cash,所以一开始cash是0,第0天时如果hold(买)股票,hold=-prices[0]。
从第i天开始,手上的现金是不变、或者hold的值+卖出股票-fee。持有的股票利润是不变,或者用手上的现金买新股。最后返回最大的利润也就是手上的现金。
class Solution {
public int maxProfit(int[] prices, int fee) {
int cash = 0, hold = -prices[0];
for (int i = 1; i < prices.length; i++) {
cash = Math.max(cash, hold + prices[i] - fee);
hold = Math.max(hold, cash - prices[i]);
}
return cash;
}
}
Last updated