62 & 63. Unique Paths I & II

62. Unique Paths

There is a robot on an m x n grid. The robot is initially located at the top-left corner (i.e., grid[0][0]). The robot tries to move to the bottom-right corner (i.e., grid[m - 1][n - 1]). The robot can only move either down or right at any point in time.

Given the two integers m and n, return the number of possible unique paths that the robot can take to reach the bottom-right corner.

The test cases are generated so that the answer will be less than or equal to 2 * 109.

Example 1:

Input: m = 3, n = 7
Output: 28

Example 2:

Input: m = 3, n = 2
Output: 3
Explanation: From the top-left corner, there are a total of 3 ways to reach the bottom-right corner:
1. Right -> Down -> Down
2. Down -> Down -> Right
3. Down -> Right -> Down

My Solutions:

用一个dp[][]记录可以走到每一步的解法。

public int uniquePaths(int m, int n) {
    if (m == 0 || n == 0) return 0;
    if (m == 1 || n == 1) return 1;
    int[][] dp = new int[m][n];

    for (int i = 0; i < m; i++) {
        for (int j = 0; j < n; j++) {
            if (i == 0 || j == 0) dp[i][j] = 1; // 第一行和第一列只有一种到达的方法
            else dp[i][j] = dp[i - 1][j] + dp[i][j - 1]; // 其他位置有从上或从左到达的方法
        }
    }

    return dp[m - 1][n - 1];
}

63. Unique Paths II

You are given an m x n integer array grid. There is a robot initially located at the top-left corner (i.e., grid[0][0]). The robot tries to move to the bottom-right corner (i.e., grid[m - 1][n - 1]). The robot can only move either down or right at any point in time.

An obstacle and space are marked as 1 or 0 respectively in grid. A path that the robot takes cannot include any square that is an obstacle.

Return the number of possible unique paths that the robot can take to reach the bottom-right corner.

The testcases are generated so that the answer will be less than or equal to 2 * 109.

Example 1:

Input: obstacleGrid = [[0,0,0],[0,1,0],[0,0,0]]
Output: 2
Explanation: There is one obstacle in the middle of the 3x3 grid above.
There are two ways to reach the bottom-right corner:
1. Right -> Right -> Down -> Down
2. Down -> Down -> Right -> Right

Example 2:

Input: obstacleGrid = [[0,1],[0,0]]
Output: 1

Constraints:

  • m == obstacleGrid.length

  • n == obstacleGrid[i].length

  • 1 <= m, n <= 100

  • obstacleGrid[i][j] is 0 or 1.

My Solutions:

和上题类似,但因为有障碍,因此不能认为第一行和第一列的每个格子一定能到达,需要先单独处理第一列和第一行。第一行从左到右和第一列从上到下的时候,如果碰到一个障碍,当前格子和剩下的格子只能先空着。在遍历其他格子的时候,如果碰到障碍,走到这里的走法设置为0.

public int uniquePathsWithObstacles(int[][] obstacleGrid) {
    if (obstacleGrid == null) return 0;
    int m = obstacleGrid.length;
    int n = obstacleGrid[0].length;
    if (m == 0 || n == 0 
        || obstacleGrid[0][0] == 1 || obstacleGrid[m - 1][n - 1] == 1) return 0;

    int[][] dp = new int[m][n];

    for (int i = 0; i < m; i++) {
        if (obstacleGrid[i][0] == 0) dp[i][0] = 1;
        else break;
    }

    for (int j = 0; j < n; j++) {
        if (obstacleGrid[0][j] == 0) dp[0][j] = 1;
        else break;
    }

    for (int i = 1; i < m; i++) {
        for (int j = 1; j < n; j++) {
            if (obstacleGrid[i][j] == 1) dp[i][j] = 0;
            else dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
        }
    }

    return dp[m - 1][n - 1];
}

Last updated