64. Minimum Path Sum

64. Minimum Path Sum

Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.

Note: You can only move either down or right at any point in time.

Example:

Input:
[
  [1,3,1],
  [1,5,1],
  [4,2,1]
]
Output: 7
Explanation: Because the path 1→3→1→1→1 minimizes the sum.

My Solutions:

和62类似,但需要记录到达每个点时的值。

方法1:想要到达一个点,一定是从上面或者左边走过来的,所以可以用一个2D array记录走到每一个点的最小值。

    public int minPathSum(int[][] grid) {
        if (grid == null || grid.length == 0 || grid[0].length == 0) {
            return 0;
        }

        int m = grid.length;
        int n = grid[0].length;
        int[][] sum = new int[m][n];
        
        sum[0][0] = grid[0][0];

        // 先记下每一行的第一个数从左边来的步数
        for (int i = 1; i < m; i++) {
            sum[i][0] = sum[i - 1][0] + grid[i][0];
        }

        // 每一列的第一个数从上面来的步数
        for (int i = 1; i < n; i++) {
            sum[0][i] = sum[0][i - 1] + grid[0][i];
        }

        for (int i = 1; i < m; i++) {
            for (int j = 1; j < n; j++) {
                sum[i][j] = Math.min(sum[i - 1][j], sum[i][j - 1]) + grid[i][j];
            }
        }

        return sum[m - 1][n - 1];
    
    }

方法2:优化上面的方法。用int[] dp = new int[n]记下每一行的第一个数从左边来的步数+此数本身。然后在iterate整个grid的途中,记录上面来的步数dp[j]或者左边来的步数dp[j -1]的最小值,再加上此数本身。这样一行一行的处理,只需要一维数组记录。

    public int minPathSum(int[][] grid) {
        if (grid == null || grid.length == 0 || grid[0].length == 0) return 0;
        
        int m = grid.length, n = grid[0].length;
        int[] dp = new int[n + 1];
        
        // dp[0] = 0 自动设置
        // 这部分处理了第一行的数字,每个数字是从左边走过来+本身
        for (int j = 1; j <= n; j++) {
            dp[j] = dp[j - 1] + grid[0][j - 1];
        }
        
        dp[0] = Integer.MAX_VALUE; // 先把dp【0】设置为最大值
        for (int i = 1; i < m; i++) { // 从第二行开始
            for (int j = 1; j <= n; j++) { // 因为dp的长度比n多1,所以要多算一格
                // 对一行里每一个数而言,走过来的路径是从上一格dp[j]或者左边一格dp[j - 1]
                // 最终结果还要加上自己本身grid[i][j - 1]
                dp[j] = Math.min(dp[j], dp[j - 1]) + grid[i][j - 1];
            }
        }
        
        return dp[n];
    }

Last updated