Climb Stairs

70. Climbing Stairs

You are climbing a stair case. It takes n steps to reach to the top.

Each time you can either climb 1 or 2 steps. In how many distinct ways can you climb to the top?

Note: Given n will be a positive integer.

Example 1:

Input: 2
Output: 2
Explanation: There are two ways to climb to the top.
1. 1 step + 1 step
2. 2 steps

Example 2:

Input: 3
Output: 3
Explanation: There are three ways to climb to the top.
1. 1 step + 1 step + 1 step
2. 1 step + 2 steps
3. 2 steps + 1 step

My Solutions:

假设梯子有n层,那么如何爬到第n层呢,因为每次只能爬1或2步,那么爬到第n层的方法要么是从第n-1层一步上来的,要不就是从n-2层2步上来的,所以:

dp[n] = dp[n-1] + dp[n-2]

class Solution {
    public int climbStairs(int n) {
        if (n <= 1) return 1;
        int[] dp = new int[n + 1];
        dp[1] = 1;
        dp[2] = 2;
        for (int i = 3; i <= n; i++) {
            dp[i] = dp[i - 1] + dp[i - 2];
        }
        return dp[n];
    }
}

引申一下,如果是可以走1,2,3,4步呢?

1:1种解法,只能走一步

2:2种解法,可以走1+1或者一次2步

3:4种解法,可以走1+1+1或者1+2或者2+1或者一次3步

4:8种解法,

5:15种解法,dp[i]=dp[i-1]+dp[i-2]+dp[i-3]+dp[i-4]

746. Min Cost Climbing Stairs

On a staircase, the i-th step has some non-negative cost cost[i] assigned (0 indexed).

Once you pay the cost, you can either climb one or two steps. You need to find minimum cost to reach the top of the floor, and you can either start from the step with index 0, or the step with index 1.

Example 1:

Input: cost = [10, 15, 20]
Output: 15
Explanation: Cheapest is start on cost[1], pay that cost and go to the top.

Example 2:

Input: cost = [1, 100, 1, 1, 1, 100, 1, 1, 100, 1]
Output: 6
Explanation: Cheapest is start on cost[0], and only step on 1s, skipping cost[3].

Note:

  1. cost will have a length in the range [2, 1000].

  2. Every cost[i] will be an integer in the range [0, 999].

My Solutions: 因为每次只能跳一步或两步,所以想要跳到i层,只能从i-2起跳+cost【i-2】,或者i-1起跳+cost【i-1】,在这两者之间取较小值。

因为一开始可以站在0或者1上,所以设置这两个dp【】=0,不需要额外加上cost。这两个数另外的位置起跳都需要加上位置的cost。dp要比cost的length多一,是因为必须要跳出最后一格。

class Solution {
    public int minCostClimbingStairs(int[] cost) {
        int n = cost.length + 1;
        int[] dp = new int[n];
        dp[0] = 0;
        dp[1] = 0;
        for (int i = 2; i < n; i++) {
            dp[i] = Math.min(dp[i - 2] + cost[i - 2], dp[i - 1] + cost[i - 1]);
        }
        return dp[n - 1];
    }
}

Last updated