222. Count Complete Tree Nodes
Given the root
of a complete binary tree, return the number of the nodes in the tree.
According to Wikipedia, every level, except possibly the last, is completely filled in a complete binary tree, and all nodes in the last level are as far left as possible. It can have between 1
and 2h
nodes inclusive at the last level h
.
Design an algorithm that runs in less than O(n)
time complexity.
Example 1:
Input: root = [1,2,3,4,5,6]
Output: 6
Example 2:
Input: root = []
Output: 0
My Solutions:
方法1:遍历所有节点
Time: O(n)
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public int countNodes(TreeNode root) {
if (root == null) return 0;
return 1 + countNodes(root.left) + countNodes(root.right);
}
}
方法2: 利用complete树的性质,一定是从左往右填node。所以先找到树的高度,如果最后一层是满的,说明node的数量是2^height-1。不然则recursively找到最后一个满的位置
Time: O(lgn * lgn)
public int countNodes(TreeNode root) {
if (root == null) return 0;
TreeNode left = root, right = root;
int height = 0;
while (right != null) {
left = left.left;
right = right.right;
height++;
}
// 这一层是满的
if (left == null) return (int) Math.pow(2, height) - 1;
else return 1 + countNodes(root.left) + countNodes(root.right);
}
Last updated