797. All Paths from Source to Target
Given a directed acyclic graph (DAG) of n
nodes labeled from 0
to n - 1
, find all possible paths from node 0
to node n - 1
and return them in any order.
The graph is given as follows: graph[i]
is a list of all nodes you can visit from node i
(i.e., there is a directed edge from node i
to node graph[i][j]
).
Example 1:
Input: graph = [[1,2],[3],[3],[]]
Output: [[0,1,3],[0,2,3]]
Explanation: There are two paths: 0 -> 1 -> 3 and 0 -> 2 -> 3.
Example 2:
Input: graph = [[4,3,1],[3,2,4],[3],[4],[]]
Output: [[0,4],[0,3,4],[0,1,3,4],[0,1,2,3,4],[0,1,4]]
Constraints:
n == graph.length
2 <= n <= 15
0 <= graph[i][j] < n
graph[i][j] != i
(i.e., there will be no self-loops).All the elements of
graph[i]
are unique.The input graph is guaranteed to be a DAG.
My Solutions:
用dfs的方法,从起点0开始dfs遍历ta可以走到的每一条路。如果source==target,说明发现一条路径,把路径加入结果。
class Solution {
public List<List<Integer>> allPathsSourceTarget(int[][] graph) {
List<List<Integer>> res = new ArrayList<>();
List<Integer> currPath = new ArrayList<>();
currPath.add(0); // 先把0放进去,因为0是source
int n = graph.length - 1; // 最后一个数字是target
dfs(graph, currPath, 0, n, res);
return res;
}
private void dfs(int[][] graph, List<Integer> currPath, int source, int target, List<List<Integer>> res) {
if (source == target) {
res.add(new ArrayList<>(currPath)); // 注意这里!把路径加入结果
return;
}
for (int i : graph[source]) { // iterate all the destination nodes for current source node
currPath.add(i);
dfs(graph, currPath, i, target, res);
currPath.remove(currPath.size() - 1);
}
}
}
Last updated